Neutrophil-Lymphocyte Ratio value as a predictor of Troponin Elevation in patients with Non-ST Segment Elevation Acute Coronary Syndrome

Lutfi hafiz zunardi, Setyasih Anjarwani, Indra Prasetya, Anna Fuji Rahimah

Abstract


Acute coronary syndrome (ACS) is a prominent contributor to mortality and morbidity on a global scale, consistently ranking within the top five primary causes. Inflammation is one of the many elements that have a role in the pathophysiology of the development and destabilization of plaque atherosclerosis in ACS. Troponin is a component of a biomarker that signals damage to the heart muscle in ACS patients; however, at the present time, not all medical facilities are able to perform troponin testing. An acute myocardial infarction begins with an initial inflammatory process that generates proinflammatory cytokines at the cellular level. This can be evaluated by the NLR through peripheral blood tests. The NLR as an indication of systemic inflammation has been demonstrated to be associated with poor clinical outcomes, an increased risk of complications, and mortality in ACS patients. In addition, several studies showed that the NLR has prognostic value in patients with ACS. The NLR is a mix of inflammatory markers, which can be a predictor of increased troponin in cases of non-ST segment elevation acute coronary syndrome (NSTEACS) in an emergency room.

Keywords


Acute Coronary Syndrome, Cardiac Enzyme, Neurotrophil-Lymphocyte Ratio, Non-ST Elevation Myocardial Infarction, Primary Percutaneous Coronary Intervention, Troponin

Full Text:

PDF

References


Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics’2017 Update: A Report from the American Heart Association. Vol 135.; 2017. doi:10.1161/CIR.0000000000000485

Epelman S, Liu P MD. Role of Innate and Adaptive Immunity in Cardiac Injury and Repair. Narure Rev Immunol. 2015;15(2):117-129. doi:10.1038/nri3800.Role

Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73-87. doi:10.1016/j.pharmthera.2018.01.001

Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018;39(2):119-177. doi:10.1093/eurheartj/ehx393

Bergmark BA, Mathenge N, Merlini PA, Lawrence-Wright MB, Giugliano RP. Acute coronary syndromes. Lancet. 2022;399(10332):1347-1358. doi:10.1016/S0140-6736(21)02391-6

Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289-1367. doi:10.1093/eurheartj/ehaa575

Buonacera A, Stancanelli B, Colaci M, Malatino L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int J Mol Sci. 2022;23(7). doi:10.3390/ijms23073636

Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal. 2019;17(1):1-11. doi:10.1186/s12964-019-0471-y

Karakas MS, Korucuk N, Tosun V, et al. Red cell distribution width and neutrophil-to-lymphocyte ratio predict left ventricular dysfunction in acute anterior ST-segment elevation myocardial infarction. J Saudi Hear Assoc. 2016;28(3):152-158. doi:10.1016/j.jsha.2015.07.001

Crea F, Libby P. Acute coronary syndromes: The way forward from mechanisms to precision treatment. Circulation. 2017;136(12):1155-1166. doi:10.1161/CIRCULATIONAHA.117.029870

Waterbury TM, Tarantini G, Vogel B, Mehran R, Gersh BJ, Gulati R. Non-atherosclerotic causes of acute coronary syndromes. Nat Rev Cardiol. 2020;17(4):229-241. doi:10.1038/s41569-019-0273-3

Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: A route to targeted therapies. Nat Rev Cardiol. 2017;14(3):133-144. doi:10.1038/nrcardio.2016.185

Bullenkamp J, Dinkla S, Kaski JC, Dumitriu IE. Targeting T cells to treat atherosclerosis: Odyssey from bench to bedside. Eur Hear J - Cardiovasc Pharmacother. 2016;2(3):194-199. doi:10.1093/ehjcvp/pvw001

Honda T, Uehara T, Matsumoto G, Arai S, Sugano M. Neutrophil left shift and white blood cell count as markers of bacterial infection. Clin Chim Acta. 2016;457:46-53. doi:10.1016/j.cca.2016.03.017

Madjid M, Awan I, Willerson JT, Casscells SW. Leukocyte count and coronary heart disease: Implications for risk assessment. J Am Coll Cardiol. 2004;44(10):1945-1956. doi:10.1016/j.jacc.2004.07.056

Libby P, Nahrendorf M, Swirski FK. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease an expanded cardiovascular continuum. J Am Coll Cardiol. 2016;67(9):1091-1103. doi:10.1016/j.jacc.2015.12.048

Grau AJ, Boddy AW, Dukovic DA, et al. Leukocyte count as an independent predictor of recurrent ischemic events. Stroke. 2004;35(5):1147-1152. doi:10.1161/01.STR.0000124122.71702.64

Sabatine MS, Morrow DA, Cannon CP, et al. Relationship between baseline white blood cell count and degree of coronary artery disease and mortality in patients with acute coronary syndromes: A TACTICS-TIMI 18 substudy. J Am Coll Cardiol. 2002;40(10):1761-1768. doi:10.1016/S0735-1097(02)02484-1

Yan X, Anzai A, Katsumata Y, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013;62:24-35. doi:10.1016/j.yjmcc.2013.04.023

Savage PA, Klawon DEJ, Miller CH. Regulatory T Cell Development. Annu Rev Immunol. 2020;38:421-453. doi:10.1146/annurev-immunol-100219-020937

Zhuang R, Meng Q, Ma X, et al. CD4+FoxP3+CD73+regulatory T cell promotes cardiac healing post-myocardial infarction. Theranostics. 2022;12(6):2707-2721. doi:10.7150/thno.68437

Hofmann U, Frantz S. Role of T-cells in myocardial infarction. Eur Heart J. 2016;37(11):873-879. doi:10.1093/eurheartj/ehv639

Santos-Zas I, Lemarié J, Zlatanova I, et al. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat Commun. 2021;12(1):1-13. doi:10.1038/s41467-021-21737-9

Hofmann U, Frantz S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ Res. 2015;116(2):354-367. doi:10.1161/CIRCRESAHA.116.304072

Xu Y, Jiang K, Chen F, et al. Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res Cardiol. 2022;117(1):1-21. doi:10.1007/s00395-022-00956-1

Ma Y, Yang X, Villalba N, et al. Circulating lymphocyte trafficking to the bone marrow contributes to lymphopenia in myocardial infarction. Am J Physiol Heart Circ Physiol. 2022;322(4):H622-H635. doi:10.1152/ajpheart.00003.2022

Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61(3):481-497. doi:10.1016/j.cardiores.2003.10.011

Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037-3047. doi:10.1084/jem.20070885

Milonas C, Jernberg T, Lindbäck J, Agewall S, Wallentin L, Stenestrand U. Effect of Angiotensin-Converting Enzyme Inhibition on One-Year Mortality and Frequency of Repeat Acute Myocardial Infarction in Patients With Acute Myocardial Infarction. Am J Cardiol. 2010;105(9):1229-1234. doi:10.1016/j.amjcard.2009.12.032

Chia S, Nagurney JT, Brown DFM, et al. Association of Leukocyte and Neutrophil Counts With Infarct Size, Left Ventricular Function and Outcomes After Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. Am J Cardiol. 2009;103(3):333-337. doi:10.1016/j.amjcard.2008.09.085

Mangold A, Alias S, Scherz T, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182-1192. doi:10.1161/CIRCRESAHA.116.304944

Vaduganathan M, Ambrosy AP, Greene SJ, et al. Predictive value of low relative lymphocyte count in patients hospitalized for heart failure with reduced ejection fraction. Circ Hear Fail. 2012;5(6):750-758. doi:10.1161/CIRCHEARTFAILURE.112.970525

Kalay N, Dogdu O, Koc F, et al. Hematologic parameters and angiographic progression of coronary atherosclerosis. Angiology. 2012;63(3):213-217. doi:10.1177/0003319711412763

Yaylak B, Ede H, Baysal E, et al. Neutrophil/lymphocyte ratio is associated with right ventricular dysfunction in patients with acute inferior ST-segment elevation myocardial infarction. Cardiol J. 2016;23(1):100-106. doi:10.5603/CJ.a2015.0061

Santos HO, Izidoro LFM. Neutrophil-Lymphocyte Ratio in Cardiovascular Disease Risk Assessment. Int J Cardiovasc Sci. 2018;31(5):532-537. doi:10.5935/2359-4802.20180038

Budzianowski J, Pieszko K, Burchardt P, Rzeźniczak J, Hiczkiewicz J. The Role of Hematological Indices in Patients with Acute Coronary Syndrome. Dis Markers. 2017;2017. doi:10.1155/2017/3041565

Hofmann U, Beyersdorf N, Weirather J, et al. Activation of CD4 + T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 2012;125(13):1652-1663. doi:10.1161/CIRCULATIONAHA.111.044164

Gaul DS, Stein S, Matter CM. Neutrophils in cardiovascular disease. Eur Heart J. 2017;38(22):1702-1704. doi:10.1093/eurheartj/ehx244




DOI: https://doi.org/10.21776/ub/hsj.2024.005.01.2

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Lutfi hafiz zunardi, Setyasih Anjarwani, Sasmojo Widito, Valerinna Yogibuana Swastika Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.