The Effect of HbA1C Variability and Lipid Profile on Carotid Intima-Media Thickness (cIMT) and Flow-mediated Dilatation (FMD) in children and adolescent with Type 1 Diabetes Mellitus at Saiful Anwar Hospital Malang

Dyah Ayu Ikeningrum, Cholid Tri Tjahjono, Novi Kurnianingsih, Sasmojo Widito, Valerina Yogibuana Swastika Putri

Abstract


Background

There is a correlation between diabetes mellitus type 1 (T1DM) and a higher risk of heart disease. Atherosclerosis, which can be discovered early with cIMT (Carotid Intima-Media Thickness) and Flow Mediated Dilation (FMD) tests, contributes to the development of cardiovascular disease. HbA1c fluctuation and lipid profile can have an impact on cIMT and FMD.

Aim

The aim of this study is to determine the influence of HbA1c variability and lipid profile on cIMT and FMD levels in children T1DM patients treated at Dr Saiful Anwar Hospital Malang.

Methods

The study utilized a cross-sectional design and included 82 participants with Type 1 Diabetes Mellitus who were routinely treated at the Dr. Saiful Anwar Hospital Malang's pediatric outpatient clinic between January - July 2019 and December 2021 and- January 2022.

Results

The correlation test revealed no significant connection between HDL (ρ=-0,029; p=0,796), LDL (ρ=-0.213; p=0.055), TG (ρ= -0.179; p= 0.107), and total cholesterol (ρ=-0.182; p= 0.101). Association tests revealed a positive correlation between LDL (ρ=0,318; p=0,004) and total cholesterol (ρ=0,230; p=0,038) levels and IMT. The correlation coefficient between HbA1C variability and FMD as evaluated by HVS was -0.498 (ρ=0.000; p=0.05), as was the correlation coefficient between HbA1c-SD (ρ=-0.467; p=0.000) and HbA1c-CV (ρ=-0.400; p=0.000). Additionally, a significant positive connection was discovered between IMT and the value of HbA1c variability utilizing HVS (ρ=0.455; p=0.000), HbA1c-SD (ρ=0.434; p=0.000), and HbA1c-CV (ρ=0.325; p=0.003). The linear regression analysis revealed that the three variables with the greatest influence on FMD were HVS (R=0.398), LDL (R=0.316), and HbA1c-SD (R=0.293). HVS (R=0.468), LDL (R=0.268), and total cholesterol (R=0.198) were the three most impactful variables on IMT. It is known that the combination of lipid profile and HbA1c fluctuation contributes 25.1% to FMD using this model. Meanwhile, the lipid profile and HbA1c variability together accounted for 34.5% of the variance in IMT.

Conclusion

Variability in HbA1c and lipid profile (LDL and total cholesterol) can contribute to an increase in intima-media thickness and a decrease in brachial artery FMD in children with T1DM.

 

 


Keywords


HbA1c Variability, Lipid Profile, cIMT, FMD, Diabetes Mellitus type 1

Full Text:

PDF

References


Kesehatan K. Pusat Data dan Informasi - Kementerian Kesehatan Republik Indonesia. Published 2020. Accessed March 29, 2022. https://pusdatin.kemkes.go.id/article/view/20111800001/diabetes-melitus.html

You WP, Henneberg M. Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth. BMJ open diabetes Res care. 2016;4(1). doi:10.1136/BMJDRC-2015-000161

IDAI. IDAI | Konsensus Nasional Pengelolaan Diabetes Tipe 1. Published 2013. Accessed March 29, 2022. https://www.idai.or.id/professional-resources/pedoman-konsensus/konsensus-nasional-pengelolaan-diabetes-tipe-1

Manjunath CN, Rawal JR, Irani PM, Madhu K. Atherogenic dyslipidemia. Indian J Endocrinol Metab. 2013;17(6):969. doi:10.4103/2230-8210.122600

Zhou Z, Sun B, Huang S, Zhu C, Bian M. Glycemic variability: adverse clinical outcomes and how to improve it? Cardiovasc Diabetol. 2020;19(1):1-14. doi:10.1186/S12933-020-01085-6/FIGURES/2

Hoffman RP, Dye AS, Huang H, Bauer JA. Glycemic variability predicts inflammation in adolescents with type 1 diabetes. J Pediatr Endocrinol Metab. 2016;29(10):1129-1133. doi:10.1515/JPEM-2016-0139/MACHINEREADABLECITATION/RIS

Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. lancet Diabetes Endocrinol. 2019;7(3):221-230. doi:10.1016/S2213-8587(18)30136-0

Papageorgiou N, Briasoulis A, Androulakis E, Tousoulis D. Imaging Subclinical Atherosclerosis: Where Do We Stand? Curr Cardiol Rev. 2017;13(1):47. doi:10.2174/1573403X12666160803095855

Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol. 2009;39(1):216-224. doi:10.1002/EJI.200838475

Dalla Pozza R, Ehringer-Schetitska D, Fritsch P, Jokinen E, Petropoulos A, Oberhoffer R. Intima media thickness measurement in children: A statement from the Association for European Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention endorsed by the Association for European Paediatric Cardiology. Atherosclerosis. 2015;238(2):380-387. doi:10.1016/J.ATHEROSCLEROSIS.2014.12.029

Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis. 2007;23(1):75-80. doi:10.1159/000097034

Maruhashi T, Kajikawa M, Kishimoto S, et al. Diagnostic Criteria of Flow-Mediated Vasodilation for Normal Endothelial Function and Nitroglycerin-Induced Vasodilation for Normal Vascular Smooth Muscle Function of the Brachial Artery. J Am Heart Assoc. 2020;9(2). doi:10.1161/JAHA.119.013915

Sun B, Luo Z, Zhou J. Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications. Cardiovasc Diabetol 2021 201. 2021;20(1):1-13. doi:10.1186/S12933-020-01200-7

Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care. 2008;31(11):2198-2202. doi:10.2337/DC08-0864

Wadén J, Forsblom C, Thorn LM, Gordin D, Saraheimo M, Groop PH. A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes. 2009;58(11):2649-2655. doi:10.2337/DB09-0693

Hsu CC, Chang HY, Huang MC, et al. HbA 1c variability is associated with microalbuminuria development in type 2 diabetes: A 7-year prospective cohort study. Diabetologia. 2012;55(12):3163-3172. doi:10.1007/S00125-012-2700-4/FIGURES/1

Gorst C, Kwok CS, Aslam S, et al. Long-term Glycemic Variability and Risk of Adverse Outcomes: A Systematic Review and Meta-analysis. Diabetes Care. 2015;38(12):2354-2369. doi:10.2337/DC15-1188

]Giannopoulou EZ, Doundoulakis I, Antza C, et al. Subclinical arterial damage in children and adolescents with type 1 diabetes: A systematic review and meta-analysis. Pediatr Diabetes. 2019;20(6):668-677. doi:10.1111/PEDI.12874

Liang S, Yin H, Wei C, Xie L, He H, Liu X. Glucose variability for cardiovascular risk factors in type 2 diabetes: a meta-analysis. J Diabetes Metab Disord. 2017;16(1). doi:10.1186/S40200-017-0323-5

Costantino S, Paneni F, Battista R, et al. Impact of Glycemic Variability on Chromatin Remodeling, Oxidative Stress, and Endothelial Dysfunction in Patients With Type 2 Diabetes and With Target HbA 1c Levels. Diabetes. 2017;66(9):2472-2482. doi:10.2337/DB17-0294

do Nascimento AMM de A, Sequeira IJ, Vasconcelos DF, Gandolfi L, Pratesi R, Nóbrega YK de M. Endothelial dysfunction in children with type 1 diabetes mellitus. Arch Endocrinol Metab. 2017;61(5):476-483. doi:10.1590/2359-3997000000271

Vergès B. Dyslipidemia in Type 1 Diabetes: AMaskedDanger. Trends Endocrinol Metab. 2020;31(6):422-434. doi:10.1016/J.TEM.2020.01.015

Guy J, Ogden L, Wadwa RP, et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for Diabetes in Youth case-control study. Diabetes Care. 2009;32(3):416-420. doi:10.2337/DC08-1775

Soedamah-Muthu SS, Chaturvedi N, Toeller M, et al. Risk factors for coronary heart disease in type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study. Diabetes Care. 2004;27(2):530-537. doi:10.2337/DIACARE.27.2.530

American Diabetes Association. Standard medical care in diabetes 2018. J Clin Appl Res Educ. 2018;41(January). doi:10.2337/dc18-Sint01

Jukema RA, Ahmed TAN, Tardif JC. Does low-density lipoprotein cholesterol induce inflammation? if so, does it matter? Current insights and future perspectives for novel therapies. BMC Med. 2019;17(1):1-9. doi:10.1186/S12916-019-1433-3/FIGURES/3

Kocaman SA, Baysan O, Çetin M, et al. An increase in epicardial adipose tissue is strongly associated with carotid intima-media thickness and atherosclerotic plaque, but LDL only with the plaque. Anatol J Cardiol. 2017;17(1):56. doi:10.14744/ANATOLJCARDIOL.2016.6885

Schofield JD, France M, Ammori B, Liu Y, Soran H. High-density lipoprotein cholesterol raising: does it matter? Curr Opin Cardiol. 2013;28(4):464-474. doi:10.1097/HCO.0B013E328362210D

Costacou T, Evans RW, Orchard TJ. High-density lipoprotein cholesterol in diabetes: is higher always better? J Clin Lipidol. 2011;5(5):387-394. doi:10.1016/J.JACL.2011.06.011




DOI: https://doi.org/10.21776/ub.hsj.2022.003.03.4

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Dyah Ayu Ikeningrum, Cholid Tri Tjahjono, Novi Kurnianingsih, Sasmojo Widito, Valerina Yogibuana Swastika Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.